PANSAT Functional Testing Software and Support Hardware

PANSAT Functional Testing Software and Hardware

- Introduction
- Support for Prototyping
- Electronic Modules Architecture
- Prototype Hardware and Software
- Spacecraft Hardware and Software
- Spacecraft Integration
- Conclusion

Introduction

- Designed and built at NPS
- Required easy functional testing
- Used COTS equipment to build the digital hardware interface prototypes
- Reused software test components
- Used simple support hardware

Support Equipment for Development

- PC:
 - ◆ IEEE-488 (GPIB) interface card
 - National Instrument's ATMIO-16
 - multiple analog inputs
 - 4 programmable digital lines
 - National Instrument's LabVIEW® for programming
- Programmable Power Supply (HP 6653A)
 - connected to the GPIB
- Programmable Load (HP 6060A)
 - connected to the GPIB
- In-circuit Emulator
 - supported embedded software development

Software Tool for Prototyping

LabVIEW

- Provided graphical programming in the form of block diagrams.
- Learned quickly and easily
- Offered sophisticated graphical user interfaces with no programming
- Allowed simple translation from engineer's concept to program
- Simplified the porting of the prototype software to the embedded system of the spacecraft flight hardware

Electronic Modules Architecture

Mr. Jim A. Horning, Naval Postgraduate School

1999 Shuttle Small Payloads Project Office Symposium

Prototype Support Hierarchy

Mr. Jim A. Horning, Naval Postgraduate School

1999 Shuttle Small Payloads Project Office Symposium

Solar Simulator VI

Monitor VI

Battery Charge Monitor Support Hierarchy

Mr. Jim A. Horning, Naval Postgraduate School

1999 Shuttle Small Payloads Project Office Symposium

Migration to Spacecraft Embedded Computer

- Ported algorithms developed in LabVIEW to C
- Used RS-232 port on embedded system to PC
 - Provided command/control
 - Provided data dumping
- Removed use of A/D conversion on PC
 - Required embedded system to perform A/D
- Modified use of individual VIs for subsystem control
 - Granted the embedded system control of the spacecraft
 - Allowed VIs to send commands to spacecraft
- Created Monitor VI to allow complete viewing of spacecraft systems using data sent across the RS-232 port

Spacecraft Integration

- Support Hardware
 - ♦ Two laptop PCs
 - ♦ HP 6653A DC programmable power supply
 - Brief-case sized RF/Modem unit
- Support Software
 - Spacecraft Test Port Interface using RS-232 port
 - Command/Control Interface program
 - LabVIEW Monitor VI

Integration Support Hierarchy

Integration Tests

- Performed a suite of automated tests after each test
 - Checked spacecraft computer
 - Powered on and check subsystems and interfaces
 - Performed EPS check
 - Toggled all switches
 - Monitored all measurements
 - Performed a moving ones write/read on Mass Storage
 - Monitored TMUX measurements
 - Tested all eight Communication states with brief-case sized Modem/RF unit in low power mode
- Archived all test results (command log, graphs, data dumps) to disk

Conclusion

- PANSAT launched aboard the STS-95 *Discovery*
- PANSAT contacted daily via NPS ground station
- Testing, integrating, and operating an autonomous spacecraft can be accomplished with reusable modules using:
 - Low cost support equipment (power supply, load)
 - Low cost PCs
 - ◆ LabVIEW
 - Custom programming
- Further development of spacecraft can be performed using this simple model